REMOTE SENSING AND GIS FOR INFRASTRUCTURE

Course Code: 19CE2102

I Semester		
\mathbf{L}	Р	С
3	0	3

Prerequisite: Surveying, AUTOCAD

Course Outcomes:

At the end of the Course the student shall be able to

CO1 Analyse the principles and components of photogrammetry and remote sensing

- CO2 Describe the process of data acquisition of satellite images and their characteristics
- CO3 Interpret image visually and digitally with digital image processing techniques
- CO4 Explain the concepts and fundamentals of GIS
- CO5 Discuss the use of Remote Sensing and GIS in different Civil Engineering applications

UNIT-I

(10 Lectures)

FUNDAMENTALS OF REMOTE SENSING

Aerial photography: Types of aerial photographs, scale of a vertical aerial photograph.

Photogrammetry: Stereoscopy, Parallax measurement.

Remote Sensing: Definition, Physics of Remote Sensing, Electromagnetic radiation and its interactions with Atmosphere, Spectral reflectance of Earth objects of Vegetation, Water and Soil.

Learning outcomes:

1.Distinguish important aspects of Aerial Photography(L1)

2.Discuss about various elements of Remote Sensing(L2)

3.Illustrate interaction of EMR with atmosphere and Earth Surface (L4)

UNIT-II DATA ACQUISITION

(10 Lectures)

Platforms and Sensors: Characteristics of LANDSAT, IRS, SPOT, High Resolution Commercial Satellites, INSAT & NOAA. Optical, Thermal and Microwave Remote Sensing, Different types of data products.

Learning outcomes:

- 1.Explain characteristics of various sensors(L2)
- 2.Discuss on Microwave & Thermal Remote Sensing(L2)
- 3.Illustrate various aspects of data acquisition(L4)

UNIT-III

(10 Lectures)

DATA ANALYSIS: Visual Interpretation keys, Digital Image Processing – Principles, Pre-classification processing, Classification techniques – Supervised and Unsupervised.

Learning outcomes:

- 1.Explain about classification techniques (L2)
- 2. Analyse data for visual interpretation (L4)
- 3.Illustrate Digital Image Processing techniques (L4)

UNIT-IV (10 Lectures) GEOGRAPHICAL INFORMATION SYSTEM

Introduction to GIS, Components of GIS, Data representation – Raster and Vector - Manual scanning and digitization, manipulation and data analysis – Integration of Remote sensing, GPS and GIS.

Learning outcomes:

- 1.Integrate Remote Sensing, GPS and GIS(L2)
- 2. Discuss overall work flow of GIS (L2)
- 3.Illustrate raster, vector and digitization(L4)

UNIT-V

(10 Lectures)

GEOGRAPHICAL INFORMATION SYSTEM APPLICATIONS

Conservation and management of natural resources – Land use/land cover mapping –Waste land management – Site selection studies -Flood control – Urban and Coastal Zone Management. Air Pollution – EIA – Detection and identification of pollution sources of surface and groundwater – Water quality mapping and monitoring.

Learning outcomes:

1.Geographical Information System on various fields(L1)

2. Detect and identify pollution sources of various water sources(L2)

3. Illustrate Land use and wasteland management (L4)

Text Books:

1. Anjireddy, M., *Remote Sensing and Geographical Information Systems*, 3rd Edition, B.S. Publications, 2006 2. Chandra, A., M., Ghosh, S., K., *Remote Sensing and Geographical Information System*, 1st Edition, Narosa Publishing house, 2007

References:

- 1. Bernhardsen, *Geographic Information Systems, an Introduction*, 3rd Edition, Published by John Wiley Sons, 2006
- 2. Lillesand T.M. and Kiefer R.W. *Remote Sensing and Image Interpretation*, 5th Edition John Wiley and Sons, 2008.
- 3. Peter A Burrough, *Principles of Geographical Information Systems*, 1st Edition, Oxford publisher, 1998.